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The Dalton-Gilat method for calculating photoelectric spectra of crystalline solids is 
considered, improved, and implemented. Spectral integration is performed by means of 
linear analytic approximation which assures high resolution, accuracy, and efficiency. 
The interest of the method is not limited to problems of solid state physics since it also 
provides a general numerical algorithm for the approximate computation of three-dimen- 
sional line integrals of rapidly varying functions. 

1. INTRODUCTION 

The photoelectric spectra of solids describe the energy distribution of electrons 
emitted from crystals by electromagnetic radiation of given frequency. The measured 
energy distribution curves can be related to crystal electron states in a more or less 
direct way depending on the various physical assumptions which prove adequate to 
the considered situation. 

A widely applicable and frequently used model is the so-called direct transition 
model which assumes that the photoelectric transitions occur between electron states 
with the same reduced quasi-momentum. In this model the spectral intensity depends 
only on the electron states belonging to one-dimensional manifolds of the Brillouin 
zone so that the calculation of photoelectric spectra from band structure amounts to 
locating and computing line integrals in the reciprocal space of k-vectors. (The 
opposite model based on indirect transitions leads to a much simpler relation and it 
will not be considered here.) Analogous problems of line integral computation are 
encountered in the determination of the de Haas-van Alphen areas and cyclotron 
masses, the lines now lying on the Fermi surface of the metal. 

A traditional technique used for this kind of calculations is the root-sampling 
method [l-3]. A large number of k-points are generated inside the Brillouin zone and 
at these points the electron energies are computed by direct spectralization of 
the Hamiltonian or by suitable interpolations over a coarser mesh [l]. Then 
the eigenvalues are selected and grouped to provide a histogram representation 
of the spectrum. 
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An entirely different method has been proposed by Dalton and Gilat [4] by gener- 
alizing to line integrals the Gilat-Raubenheimer zonal integration method for surface 
integrals. This method relies on analytical integration inside small rectangular 
prisms where the integration curve is approximated by a straight line. Although 
theoretical spectra obtained by means of special adaptations of this method to simple 
cases of high symmetry crystals had been previously reported [5-71, only [4] gives the 
method a general form allowing a broader class of applications. Nevertheless, and in 
spite of its substantial advantages, the Dalton-Gilat algorithm has never been imple- 
mented, probably because of some complications apparent in the presentation, apart 
from some misprints in the analytical relations. 

In this paper an improved version of the Dalton-Gilat algorithm is presented. The 
proposed improvement is such that the transition probability of photoexcitation is 
taken into account within linear approximation so as to reproduce fine details of the 
spectrum with lower numerical distortion, at a fixed computational effort. Therefore 
this modification to the original Dalton-Gilat algorithm parallels the analogous one 
proposed by Gilat and Kam [9] to the Gilat-Raubenheimer method for surface 
integrals [8]. 

The presence of the linear term accounting for rapid variations of the integrand 
function inside the prism and the shape of rectangular prisms matching many different 
integration domains make this algorithm a general numerical method to compute 
approximate line integrals in a three-dimensional space. As a matter of fact, to 
disregard higher order terms may cause convergence problems in regions where the 
integrand has pathological behavior. This may happen, for instance, to line integrals 
in unbounded domains when the algorithm is used after mapping the integration 
domain into a bounded one. With this concern in mind the algorithm can also be 
applied to problems different from those of solid state physics for which it had been 
originally developed. 

The paper also presents an application of the algorithm to the calculation of the 
energy distribution spectra of photoexcited electrons in the nearly-free-electron 
model. A semiquantitative assessment of the accuracy and resolution of the method 
is attempted by comparing approximate and exact values of the spectra. 

The exposition is divided as follows. Section 2 contains the description of the 
integration algorithm and all the relevant analytical relations required for its direct 
implementation. Section 3 discusses the computational performances of the method in 
connection with the numerical results obtained for the nearly-free-electron model. The 
analytical solution of the initial-energy distribution of photoexcited electrons in the 
first interband transition of the model is derived in the Appendix. 

2. THE METHOD 

The widely used three-step model [lo, 121 envisages the photoemission process as 
consisting of three independent steps: optical excitation via direct (vertical) interband 
transitions in the bulk of the crystal, electron transport to the surface, and electron 
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escape across the surface. The internal distribution N(E, w) of final energy E of the 
electrons excited by electromagnetic radiation of fixed frequency o is given by 

x S(w - E,(k) + f%(k)) x a(E - E,(k)) (1) 

where pir(k) is the matrix element of the transition between the initial state i and the 
final statef, f”(E) is the Fermi-Dirac distribution function, and C is some normaliza- 
tion constant. 

Electron transport and escape are usually taken into account according to pheno- 
menological models [lo] which lead to spectral relations differing from (1) only in that 
a more involved integrand function is implied. Without any loss of generality it is 
assumed hereafter that all the integrand functions are lumped together with the term 
I PirW. 

Physically the first delta function in relation (1) selects the set of electron states 
satisfying energy conservation in optical excitation and lying on a k-space surface, the 
so-called optical energy shell [12]. The second delta selects from this set of states 
those with the correct final energy E, so defining a curve L(E, w) in the k-space [12]. 
In fact the integral (1) can be transformed into the line integral 

(2) 

where Efi = E, - Ei , 
The integral will be computed by dividing the integration domain into small 

rectangular prisms of sides 2p, , 2p, , and 2p, and then, within each prism, replacing 
the functions Efi(k), E,(k), and i pir(k)j2 by the first two terms in their power series 
expansion about the center k, of the prism [4]. One is led to compute integrals of the 
We 

~Uo,~o)= 1 j 
1 A x B I 

(Fo t F * q> dL (3) 
ALL+,,B~~ 

where by definition q = k - k, , 

Fo = I Pir@o)12> F = V I pi&o)12, 

A, = w - Mko), A = VEAko), 

4, = E - E&J, B = V&(ko), 

and dL(A, , B,) is the length of the portion of the line of intersection between the 
planes A * q = A, and B * q = B, which lies within the prism. Integral (3) differs 
from the analogous relation in [4] in that the linear term is retained. The explicit 
relations for the analytical evaluation of (3) are now derived by rephrasing the 
geometrical arguments of Dalton and Gilat so as to obtain simpler analytical relations. 
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Introducing the spatial homothety of ratio p1 p2 p3 and using the same symbol as 
before for the scaled vectors we arrive at 

I=PlP2P3 ,A ; B / s 
dL V,, + F * s> dL = ~1~2~3 

(Fo+F*Q)AL 
/AxBI ’ (4) 

where AL is now the scaled length of the line portion inside the cube and Q is the 
position of the center of this straight segment with respect to the cube center. 

Let C = A x B be the vector in the direction of the line AL and c = C/C the 
corresponding unit vector. Let the directions of qi be chosen so that c3 3 c, > c1 > 0. 
A new Cartesian coordinate system (ul, a2 , u3) is introduced such that Bs = c and 
,. ~~.&=O,where$,,ii,, and ii, are axis unit vectors, by means of the transformation 
matrix 

-w2ls - ClC3lS 

c3ls -c2ls , 

c2 c3 I 

where s = (1 - c,31i2. Then the coordinates U, and U, of the line AL in the plane 
(ur , u2) are given by the linear system 

alUl+(a x c),U2=sao, 

b,U, + (b x cl, U2 = sb, , 
(5) 

where a, = AJA and bi = BJB, with i = 0, 1,2,3. 
If U, < 0 let the signs of U, and U, , and of all the components of the vector TF, 

be changed (the rotation is chosen in place of the reflection to reduce to a minimum 
the number of analytical relations). 

In the general case c3 > c2 > c1 > 0 it can be shown that five distinct domains of 
the half-plane (ul , u2 > 0) given in Table I correspond to intersections of the line AL 
with different couples of cube faces. The values of the length AL and the center 
coordinate U,’ of the portion of the line inside the cube can be calculated for each 
distinct domain and they are listed in Table I. The degenerate case c3 > cz > c1 = 0 
(1 = c3 > c2 = c1 = 0) gives rise to only two (one) distinct domains (domain) and 
can be dealt with by means of the same relations of Table I restricted to domains I 
and II (I). System (5) will be solved by factorizing its matrix once and then performing 
substitutions for all distinct pairs (a,, , b,,). 

The greatest numerical errors in the computation of the integral (2) are made at 
critical points of the k-space, i.e., points where 1 V&(k) x WE,(k)/ = 0. The vanishing 
of the vector product can result from the vanishing of either of the vectors or from the 
coincidence of their directions. The latter circumstance is the most frequent and gives 
rise to singular spectral behaviors of three kinds: left and right square discontinuities 
and logarithmically infinite peaks [12], which correspond to the three types of critical 
points of a function periodic in two dimensions, i.e., lower and upper extrema and 
saddle points, respectively [ 131. 
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The spectral integration of contributions coming from these critical regions is 
necessarly inaccurate, no matter what the method, and linear analytic methods 
are no exception [14]. However, as emphasized in [15], analytic integration is no 
less accurate than other methods even in these critical regions. Anyway, the use 
of a mesh shifted with respect to the coordinate axis will reduce the error due 
to most critical points since for symmetry reasons it is highly probable their 
location is on the surfaces of the Brillouin zone. Information about the critical points 
and critical lines can be obtained by the two-dimensional analysis over the zone 
boundaries [12] which is complementary to three-dimensional calculations through 
the bulk of the zone. 

3. APPLICATION TO THE NEARLY-FREE-ELECTRON MODEL 

To investigate the resolution and accuracy of the algorithm the nearly-free-electron 
model has been chosen since it is possible to derive analytically its energy distributions 
of photoexcited electrons over the full range of photon energy (see the Appendix). 
Furthermore these spectra display the singular behavior of physical spectra and 
therefore represent a good test for the integration method. The first band has been 
assumed entirely filled and the integration domain shown in Fig. 1 has been chosen 
so as to compare directly the exact and approximate values. 

FIG. 1. Integration domain of the k-space for the nearly-free-electron model. 

Figure 2 displayes in a three-dimensional plot all spectra, whose photon energy 
ranges from the lowest value for transitions at the band gap, to the highest value for 
transitions involving states at the bottom of the valence band. The first dimensionless 
Fourier component VG/(@)z of the periodic potential is equal to 0.3 and a constant 
dipole matrix element is assumed. 

The spectrum N(E, W) for a fixed w has a left square edge discontinuity due to the 
critical point A shown in Fig. 1 where the electron energy surface has a minimum 
over the optical energy shell, the plane ABC in Fig. 1. On the other hand, the square 
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FIG. 2. Initial-energy distributions N(E, W) of photoexcited electrons in the nearly-free-electron 
model. VG/(&G)~ = 0.3 and the transition probability is constant: (a) exact, (b) calculated, (c) error 
(scale x 10). 

edge discontinuity displayed for a fixed E and varying W, can be explained as resulting 
from the contribution of an entire curve where the optical energy shell has an extended 
maximum with nonzero derivative normal to the curve. The asymptotic behavior at 
minimum photon energy is due to the vanishing of VEfi for optical transitions at the 
band gap (note that this structure in the internal distribution will be removed when 
passing to photoemission spectra owing to the cutoff imposed by the work function). 
Finally, the two lines where the slope of the spectrum changes are a consequence of 
the cutoff caused by the shape of the integration domain (see points B and C in 
Fig. 1). It is noticed that the rectangular box shape of the spectrum at fixed w and the 
intensity dependence on w are consistent with the results obtained in [2] for the 
nearly-free-electron model of a metal. 
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Numerical tests have been performed by means of this model with the additional 
feature of a transition probability 1 Pir(k)j2 varying as (k,/gG)“, with m an integer. 
Components of VE,, have received a slight perturbation, smaller than truncation 
errors, to obtain performance estimates meaningful also for nondegenerate situations. 

Figures 2 and 3 display the exact spectra, the calculated spectra, and the numerical 
error, for constant and varying dipoles, respectively. The approximate calculation is 
performed with 4000 small prisms in the integration domain and the number of 
energy values considered is nE = 30 and IZ, = 45, which corresponds to resolutions of 
3 x 1O-2 and 2 x 1O-2 respectively. In both cases an average accuracy of ~10-~ is 
obtained by a very limited computational effort of -10 set (UNIVAC 1108) for the 
calculation of -1000 distinct line integrals. The error plots clearly show that the 

FIG. 3. Initial-energy distributions N(E, w) of photoexcited electrons in the nearly-free-electron 
model. V,&G)2 = 0.3 and the transition probability varies as (k&G): (a) exact, (b) calculated, 
(c) error (scale x 10). 
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greatest numerical distortions take place near the asymptote and the square edge 
discontinuity. 

The nearly-free-electron model also allows us to show the advantage of using the 
improved algorithm in place of the Dalton-Gilat algorithm, as shown in Fig. 4 where 
a single spectrum with a dipole varying as (/c,/+G)~ is given together with the curves 
of the numerical error of the two algorithms. The comparison between the errors 
shows that the improved algorithm achieves a sensibly higher accuracy although its 
local error can be larger somewhere. The calculation of this single spectrum with 
nE = 100 and 8000 small prisms requires 4.25 set andan average accuracy of 
2 x 1O-3 is obtained. 

t 

N(E.w) 

FIG. 4. Initial-energy distribution N(E, o) for o/(~G)~ = 2.5 of photoexcited electrons in the 
nearly-free-electron model. VG/(~G)2 = 0.3 and the transition probability varies as (k,/$G)5. The 
lower curves show the numerical error (scale x 10) of the original and of the improved integration 
algorithm. 

To have some figures meaningful for physical calculations the computed photo- 
electric spectrum at w = 10.5 eV of the crystalline compound SnTe [16] is reported in 
Fig. 5. An accuracy and a resolution of 1O-2 are obtained by means of -10,000 

N(E) 1 

-5 -4 -3 -2 -1 0 

FIGURE 5 
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small prisms quadratically interpolated [17] over the coarser mesh of 185 computed 
points. The calculation involves 65 interband transitions and requires ~20 set of 
computation, which compares favorably with the -3Omin required by the root- 
sampling method to achieve comparable resolution and accuracy. 

4. CONCLUSION 

The method for computing photoelectric spectra of crystals here presented fully 
exploits all the advantages of linear analytic methods for spectral integration. The 
algorithm has proved to be noticeably more accurate than its direct ancestor [4] 
without requiring a substantial increase in the computational effort. These distinctive 
features make the algorithm particularly suited to accomplish detailed theoretical 
analysis of presently relevant photoelectric measurements performed by means of the 
continuous spectrum of synchrotron radiation. Moreover it can also conveniently be 
applied in carrying out extensive studies of the reciprocal space origin of the photo- 
electric structures as required when investigating the consequences of a theoretical 
model of band structure. 

If computational convenience severely limits the number of k-points where the 
Hamiltonian can be spectralized, this linear analytic method lends itself to being 
directly coupled to the quadratic discrete interpolation scheme, so as to provide a 
so-called hybrid method [17]. In this case the choice of the optimal interpolation mesh 
for a required resolution must be determined by inspection, since for double spectral 
integrals it lacks the analysis analogous to the one given in [17] for single spectral 
integrals. 

It is worthwhile to conclude by observing that linear analytic methods seem to 
provide the most suited computational instrument in the theoretical interpretation of 
experimental results of modern photoelectron spectroscopy, the trend being that of 
probing more and more detailed and local properties of electron eigenvalues and 
eigenstates. A simple example is offered by the study of angular dependence of photo- 
electric emission where by means of the linear analytic method 1181 it is possible to 
overcome the computational inconveniences inherent to the naif root-sampling 
method. 

APPENDIX 

The initial-energy distribution of photoexcited electrons in the first interband 
transition of the nearly-free-electron model is analytically derived. The total density 
of state of the same model has been reported already [ 191. 

The first two energy bands of the nearly-free-electron model [ 141 are 

El,,@) = t[k2 + (k - G)2] + &([k2 - (k - G)2]2 + 4VG2}lj2, 
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where G is the first reciprocal lattice vector in the &-direction, E1 and E2 refer to the 
valence and conduction bands, respectively, with the zero energy chosen so that 
v, = 0. 

The distribution N(E, 0) of the initial energy of optically excited electrons arising 
from direct interband transitions is given by 

s 
d3kF(k) S(w - E,(k) + E,(k)) x 6(E - E,(k)) 

where V is the volume of crystal unit cell, w is the photon energy, and F(k) is the 
square dipole matrix element for the optical transition. By choosing as integration 
domain the right triangular prism (0 < k, < +G, 0 G k, < k, < $G) and by intro- 
ducing the dimensionless variables k’ = k/+G, e = E/(+G)2, w = o/($G)~ and n = 
N * 2(4G)4 the integral becomes (omitting the prime) 

n(e, IV) = 16 I1 dk, f dk, 1” dk, F(k) 6(w - e,(k) + e,(k)) x S(e - e,(k)). 
0 0 0 

In what follows the integrand function is taken as constant since the derivation can be 
easily extended to the functions F(k) = k,” used in the numerical tests. If F(k) = 1 
then 

n(e, w) = 16 I1 dkk, 6(w - 4((1 - k$ 
0 

where u = Vo/(&G)” and 

K(e, k,) = s’ dk, Jk k, , k,), 
0 

J(e, k, , k,) = I dk, 6(e - f(k,J - 

f(k3C) = 1 + (1 - ksJ2 - ‘W 

+ +‘/41”“) K(e, k,), 

ku2 - kz2), 

- k,J2 + u2/4}lj2. 

By means of the well-known properties of the Dirac delta function the integral J is 
easily obtained 

J(e, k k ) = e(e - f&J - k,2) WV2 - (e - fWY2) 
ZY Y 2(e - f(kz) - k1/2}lj2 ’ 

0 being the unit-step function. In turn the function K is given by 
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where r = r(e, k,) = (e - f(/~~))-~. The last integration is trivial and provides the 
energy distribution 

n(e, IV) = 4&v - 20) 8(4(1 + 0~/4}l/~ - w) K(e, 1 - ws/4)/s 

where s = (1 - (~v/Iv)~}~~~. 
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